Expression of phenylalanine hydroxylase (PAH) in erythrogenic bone marrow does not correct hyperphenylalaninemia in Pah(enu2) mice.
نویسندگان
چکیده
BACKGROUND Treatment of many inherited liver enzyme deficiencies requires the removal of toxic intermediate metabolites from the blood of affected individuals. We propose that circulating toxins can be adequately cleared and disease phenotype influenced by enzyme expressed in tissues other than the liver, such as bone marrow. Our specific hypothesis was that phenylalanine hydroxylase (PAH) expressed in bone marrow would lower blood phenylalanine levels in hyperphenylalaninemic Pah(enu2) mice, a model of human phenylketonuria (PKU). METHODS Germline-modified marrow PAH-expressing mice were developed using a transgene that contained the mouse liver PAH cDNA under the transcriptional control of a human beta-globin promoter. Marrow PAH-expressing mice were bred to Pah(enu2) mice to generate progeny that lacked liver PAH activity but expressed PAH in bone marrow. RESULTS Marrow PAH expression did not affect the health, function, or reproductive capacity of transgenic animals. Hyperphenylalaninemia persisted in transgenic Pah(enu2) homozygous mice despite PAH activity in marrow lysates, and was not altered following supplementation with tetrahydrobiopterin (BH(4)), a required cofactor for PAH. PAH activity measured in intact marrow cells was significantly lower than in marrow lysates; no such difference was measured in isolated hepatocytes vs. liver homogenate. CONCLUSIONS Marrow PAH expression did not correct hyperphenylalaninemia in Pah(enu2) mice. Phenylalanine clearance may have been limited by the natural perfusion rate of the marrow compartment, by insufficient PAH expression in marrow, or by other cellular factors affecting phenylalanine metabolism in intact marrow cells. Differences in PAH activity measured in intact marrow cells vs. cell lysates suggest that hepatocytes and PAH-expressing marrow cells are fundamentally different in their ability to metabolize phenylalanine. The efficacy of bone-marrow-directed gene therapy as a metabolic sink in the treatment of phenylketonuria may be limited, although further experiments with greater marrow PAH expression levels will be necessary to definitively prove this conclusion.
منابع مشابه
Carcinogenic Effects in a Phenylketonuria Mouse Model
Phenylketonuria (PKU) is a metabolic disorder caused by impaired phenylalanine hydroxylase (PAH). This condition results in hyperphenylalaninemia and elevated levels of abnormal phenylalanine metabolites, among which is phenylacetic acid/phenylacetate (PA). In recent years, PA and its analogs were found to have anticancer activity against a variety of malignancies suggesting the possibility tha...
متن کاملA Sensitive Assay System To Test Antisense Oligonucleotides for Splice Suppression Therapy in the Mouse Liver
We have previously demonstrated the efficacy of antisense therapy for splicing defects in cellular models of metabolic diseases, suppressing the use of cryptic splice sites or pseudoexon insertions. To date, no animal models with these defects are available. Here, we propose exon skipping of the phenylalanine hydroxylase (Pah) gene expressed in liver and kidney to generate systemic hyperphenyla...
متن کاملTetrahydrobiopterin protects phenylalanine hydroxylase activity in vivo: implications for tetrahydrobiopterin-responsive hyperphenylalaninemia.
The natural cofactor of phenylalanine hydroxylase (PAH), tetrahydrobiopterin (BH4), regulates the enzyme activity as well as being essential in catalysis. BH4-responsive PAH deficiency is a variant of hyperphenylalaninemia or phenylketonuria (PKU) caused by mutations in the human PAH gene that respond to oral BH4 loading by stimulating enzyme activity and therefore lowering serum phenylalanine....
متن کاملCharacterization of transgenic mice with the expression of phenylalanine hydroxylase and GTP cyclohydrolase I in the skin.
Phenylketonuria (PKU) is a metabolic disease causing increased levels of phenylalanine in blood and body fluids. Circulating phenylalanine is normally cleared by phenylalanine hydroxylase (PAH) expressed in the liver. The aim of this study is to exploit the skin as a 'metabolic sink' removing phenylalanine from the blood. We have previously showed that the overexpression of PAH and GTP cyclohyd...
متن کاملHippocampal synaptic connectivity in phenylketonuria.
In humans, lack of phenylalanine hydroxylase (Pah) activity results in phenylketonuria (PKU), which is associated with the development of severe mental retardation after birth. The underlying mechanisms, however, are poorly understood. Mutations of the Pah gene in Pah(enu2)/c57bl6 mice result in elevated levels of phenylalanine in serum similar to those in humans suffering from PKU. In our stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of gene medicine
دوره 5 11 شماره
صفحات -
تاریخ انتشار 2003